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Abstract

Statistical arbitrage strategies are market neutral trading strategies,
which exploit market inefficiencies by taking long and short positions in a
spread in order to generate a positive excess returns. This study analyses
the relationship between the variation of waiting-time distribution of the
traded spread and market efficiency. A statistical arbitrage optimisation
procedure is obtained for both the Markovian and non-Markovian forms
of Continuous-time random walk. A detrended spread between the two
classes of ordinary shares of Royal Dutch Shell Plc and a spread between
the two listings of Australia and New Zealand Banking Group Limited
are used to observe market inefficient states. We find that the waiting-
time and the survival probabilities have a significant impact on the price
dynamics and indicate market inefficiency.
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1 Introduction

Market efficiency became a very prolific research topic since recent studies on
pair trading [1, 2, 3, 4] have shown that predictable patterns inferred from
historical data can be exploited to generate systematic excess returns. Pairs
trading strategies (or statistical arbitrage) aim at taking a profit of the short-
term price discrepancies observed on the spread between two assets sharing the
same source of randomness. The spread between two co-integrated portfolios
should be stationary and account for transaction costs and liquidity risk. The
magnitude of the spread quantifies the level of mispricing. Statistical arbitrage
strategies consist of optimising boundary conditions or barrier levels, under or
above which, a long or short position in the spread is taken. The expected profit
generated by the strategy on a given period depends on the barrier levels. They
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condition the expected frequency of the trades and the profit per trade: wide
boundary conditions generate a large profit per trade but reduce the number
of anticipated transactions. The number of trades per period is a renewal pro-
cess and the average time between transactions is estimated by evaluating the
first-passage time of the spread. Statistical arbitrage barrier levels provide a
quantitative measure of short-term market efficiency: market is efficient within
and inefficient outside the barriers. In this study we present a quantitative ap-
proach to measure the efficiency based on waiting time distribution.

In line with Osmekhin and Délèze [5, 6], we describe a pairs trading strategy,
where the spread or log-price difference between two co-integrated portfolios is
modelled with continuous-time random walk (CTRW). Continuous-time random
walk is an extension of the classical random walk model initiated by Montroll
and Weiss in 1965 [7]. CTRW was introduced as a theoretical approach to
describe the diffusion process in solid state physics, where the waiting-time be-
tween two sequential space jumps of a moving particle is modelled stochastically.
It models the dynamics of the probability density function of observing a par-
ticle in the space point x at time t. Similar processes take place in financial
markets, where the time between transactions is stochastic and where trades in-
duce price jumps [8]. Nowadays the CTRW framework is widely used in finance
to predict and analyze the price behaviour of stock and derivatives [9, 10, 11]
by calculating the probability density function (pdf) p of finding a certain price
at a given time t.

Two main forms of CTRW has been recently described to model the price
of financial assets [9, 10, 12]: a Markovian (memoryless) and a non-Markovian
model. The CTRW Markovian equation describes the standard dynamic to
model the price of financial instruments. The model can be seen as a generali-
sation of the geometric Brownian motion as it uses the asset return distribution
as the unique driver to model the price fluctuation of an asset over time. Asset
returns are known to be leptokurtic [13] and the assumption of independent
and identically distributed equity returns underestimates the real probability
of extreme events [14]. Fat-tailed distributions are supported by the general
framework of CTRW.

The non-Markovian CTRW is an extension of the Markovian CTRW where
both the time between transactions, called waiting-time, and the asset returns
are modelled stochastically. The waiting-time distribution reflects the market
liquidity. A transaction in a very illiquid market, i.e. when the waiting-time
is abnormally long, translates into abrupt price changes while a transaction in
a very liquid period has very little impact on price [15]. As the waiting-time
distribution conveys relevant information about price formation we can expect
the non-Markovian approach to outperform the memoryless model.

The master equation of the pdf p is a partial differential equation which
includes the probability density functions of the waiting-time and asset returns.
The solution of the master equation provides optimal barrier levels used in sta-
tistical arbitrage spread trading. The paper evaluates the level of mispricing
using a fully stationary spread between the two listings of the Australia and
New Zealand Banking Group Limited (ANZ) stocks. In practice, the spread
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between two cross-listed stocks are not necessarily perfectly stationary, even
though both financial assets are traded on the same underlying product and,
therefore, share the same source of information. We evaluate the profitability
of the strategy using a detrended spread between Royal Dutch Shell A and B
shares. Using tick-by-tick spread data we found that the distribution of the
waiting-time or time between consecutive transactions varies with the level of
mispricing for both spreads. The assumption of the exponential waiting-time
distribution provides a quantitative measure of the market inefficiency and can
be used as a market efficiency indicator.

Chapter 2 describes empirical data used in the study. Chapter 3 introduces
the CTRW theoretical outlines and summarises the optimal trading strategy
[5] and the two forms of CTRW used to model the dynamics of the spread [6].
The fourth chapter presents the results and discussion. We show the correla-
tion between waiting-time distribution and market efficiency. Finally, chapter
5 concludes the article.

2 Empirical Data

To show the impact of the waiting-time distribution on market efficiency, two
spreads between cross-listed stocks are constructed. The first spread is built
around the two classes of ordinary shares of Royal Dutch Shell Plc: RDS.A
and RDS.B1. The second spread is constructed with the two highly correlated
listings of the Australia and New Zealand Banking Group Limited (ANZ) traded
in Sydney on the Australian Stock Exchange (ANZ.AX) and in Wellington on
the New-Zealand Stock Exchange (ANZ.NZ).

2.1 Royal Dutch Shell Spread

Both classes of Royal Dutch Shell ordinary shares have identical rights, except
related to the dividend access mechanism, which only applies to the Class B
ordinary shares. Class A ordinary shares have a Dutch source for tax purposes
and are subject to Dutch withholding tax. Class B ordinary shares are entitled
to a UK tax credit in respect of their proportional share of such dividends. Even
though the information relative to Royal Dutch Shell Plc flows into both classes
of shares, the log-price difference between the two classes

xt = log(RDS.A)− log(RDS.B)

is not continuously stationary. The sample spread contains 3,187,942 mid-quote
prices obtained from tickmarketdata.com [16]. Figure 1 displays the evolution
of the spread xt for the period between 1 March 2012 and 5 March 2013. After
filtering out illiquid periods when the bid-ask spread exceeds 0.001, the spread
series is detrended by applying a moving median of order 50,000. The detrended
spread x̃t is illustrated on figure 2. The distribution of the detrended spread is
presented in figure 3. Asset The number of lags of the moving median has been
chosen to ensure that the process x̃t is stationary. Both the Augmented-Dickey

1http://www.shell.com/global/aboutshell/investor/share-price-information/difference-a-
b.html
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Fuller and Perron test reject the null hypothesis of unit root at 99% confidence
level.

2.2 ANZ Spread

Unlike the spread formed of Royal Dutch Shell, the spread between ANZ.NX and
ANZ.AX is continuously stationary at 99% confidence level and does not need
to be detrended. ANZ.AX is traded in AUD on the Australian stock exchange
in Sydney. The ANZ Bank New Zealand Limited, ANZ.NZ, is traded in NZD
in Wellington on the New Zealand stock exchange. The time zone difference
between the two exchanges is two hours. Using the Australian local time, the
spread, x, is computed as follows:

xt = log(ANZ.AX)− log(ANZ.NZ) + log(FXAUD/NZD) (1)

ANZ.NZ is traded between 10:00 and 16:45 local time and ANZ.AX between
10:00 and 16:00 Sydney time. The spread depicted in figure 4 is computed for
the period between 4 January 2012 and 8 March 2013 [16]. The distribution of
the detrended spread is presented in figure 5. To prevent information asymme-
try, the spread is calculated when both markets are open. It includes 306,071
observations.

3 Theory

The present section is divided into two parts. The first part describes the
continuous-time random walk (CTRW) approach with Markovian and non-
Markovian masters equations. The second part explains the optimisation of
the statistical arbitrage trading strategy.

3.1 Continuous-Time Random Walk

Most studies in finance, including the market microstructure literature, sam-
ple asset prices at regular time intervals and only models prices as stochastic
processes. However, the time between transactions provides predictive informa-
tion regarding future asset prices and should be not neglected. This study uses
the CTRW of Montroll and Weiss [7] to describe the price dynamics at a tick
level, where both the price and time between two transactions are modelled with
random variables. CTRW has already been applied in finance to measure the
impact of option price on underlying price changes [11]. We follow the approach
of Scalas et al [17, 10, 12] and introduce the following notation:
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x(t) = logS(t) : logarithm of the asset price S at time t.
τi = ti+1 − ti : waiting-time.
ξi = x(ti+1)− x(ti) : log-return of asset price S at time t.
ϕ(ξ, τ) : joint prob. of returns and waiting-time.
ψ(τ) =

∫∞
−∞ ϕ(ξ, τ)dξ : waiting-time pdf.

λ(ξ) =
∫∞
0
ϕ(ξ, τ)dτ : asset return pdf.

p(x, t) : pdf of finding x at time t.

f̂(κ) =
∫∞
−∞ eiκxf(x)dx : Fourier transform of f(x)

f̃(s) =
∫∞
0
e−stf(t)dt : Laplace transform of f(t).˜̂

f(κ, s) =
∫∞
0

∫∞
−∞ e−st+iκxf(x, t)dxdt : Fourier-Laplace transform of f(x, t)

Given a transaction at time ti−1, ψ represents the probability density func-
tion that a transaction take place at time ti−1 + τ . Hence, the probability that
a transaction is carried out within τ ≤ ti − ti−1 ≤ τ + dτ is ψ(τ)dτ . So, the
normalisation condition on the waiting-time is

∫
ψ(τ)dτ = 1.

λ represents the transaction probability density function that the log-price
jumps from x to x + ξ. Its normalisation condition is

∫
λ(ξ)dξ = 1. The

normalisation condition on the joint probability density between waiting-time
and returns is, therefore,

∫ ∫
ϕ(ξ, τ)dξdτ = 1. The probability that the log-

price does not change during a period greater or equal to τ , also called survival
probability until time instant t at the initial position x0 = 0, denoted by Ψ(τ),
is Ψ(τ) = 1−

∫ τ
0
ψ(t)dt =

∫∞
τ
ψ(t)dt.

Montroll and Weiss [7] show that the Fourier-Laplace transform of p(κ, s)
satisfies:

˜̂p(κ, s) =
1− ψ̃(s)

s

1

1− ˜̂ϕ(κ, s)
(2)

Assuming that the time between two transactions and the returns are inde-
pendent and that the time between transactions are i.i.d., the joint probability
is the product of the return and the waiting-time probability density functions,
i.e. ϕ(ξ, τ) = λ(ξ)ψ(τ). Equation (2) can then be rewritten as:

˜̂p(κ, s) =
1− ψ̃(s)

s

1

1− λ̂(κ)ψ̃(s)
=

Ψ̃(s)

1− λ̂(κ)ψ̃(s)
(3)

Reorganising the terms of (3) as ˜̂p(κ, s) = Ψ̃(s)+ ψ̃(s)λ̂(κ)˜̂p(κ, s) and invert-
ing the Fourier-Laplace transform, we obtain the master equation of p(x, t):

p(x, t) = δ(x)Ψ(t) +

∫ ∞
0

dt′ψ(t− t′)
∫ ∞
−∞

λ(x− x′)p(x′, t′)dx′ (4)

The initial condition is that the log-price is initially at its origin x = 0, i.e.
p(x, 0) = δ(x) where δ(x) is the Dirac function.
The probability of finding log-price x at time t, p(x, t), in the master equation
(4) is the sum of two terms: an initial condition, i.e. the survival probability
up to time instant t, Ψ(t), times the jump pdf at point x, δ(x), and a spatio-
temporal convolution term.
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The second term is the time aggregation over the period [0, t] of the marginal
contribution to p(x, t) of the log-price jump from x′ ∈ R to x at time t′ < t:∫∞
−∞ λ(x−x′)p(x′, t′)dx′ by the probability waiting-time probability ψ(t−t′)dt′.

As described in [17], this form of the master equation shows the non-local and
non-Markovian character of the CTRW:

∂

∂t
p(x, t) +

∫ t

0

φ(t− t′)p(x, t′)dt′ =

∫ t

0

φ(t− t′)
∫ ∞
−∞

λ(x− x′)p(x′, t′)dx′dt′ (5)

where the kernel φ(t) is defined through its Laplace transform:

φ̃(s) =
sψ̃(s)

1− ψ̃(s)
(6)

An alternative form of the master equation (4) was proposed in Mainardi et al
[10], which is the solution of the Green function or the fundamental solution of
Cauchy problem with the initial condition p(x, 0) = δ(x):∫ t

0

φ(t− t′) ∂
∂t′

p(x, t′)dt′ = −p(x, t) +

∫ ∞
−∞

λ(x− x′)p(x′, t)dx′ (7)

This form of the master equation is clearly non-Markovian as φ(s) is defined as
a function of the survival probability. As φ̃(s) = 1, i.e. φ(s) = δ(x), the master
equation for the CTRW becomes Markovian:

∂

∂t
p(x, t) = −p(x, t) +

∫ ∞
−∞

λ(x− x′)p(x′, t)dx′ (8)

with initial condition of p(x, 0) = δ(x).

Figure 6 illustrates the modelled solution of the Markovian master equation
(8). At time t = 0, the probability density function p(x, t) is a delta Dirac
function because the current price is known. The uncertainty then increases with
time and broadens p(x, t). The skewness of the distribution λ(x), modelled in the
figure with an exponential distribution, orientates p(x, t). The cross-sectional
view at a given point in time t > 0 is the distribution of asset returns. Thus,
p(x, t = 200 sec) reflects the expected distribution of the log-price x 200 seconds
ahead. The difference between the Markovian and non-Markovian approaches
is illustrated in figure 7. The top three graphs show cross-sectional views of the
Markovian, non-Markovian and its difference at time step t = 4. The bottom
graph gives a three dimensional representation of the differences between the
two PDEs over time. The non-Markovian approach is significantly different from
the Markovian approach and should be used for the price behaviour analysis.

3.2 Statistical arbitrage trading strategy optimization

One of the key considerations in pairs trading consists of finding optimal barrier
levels, which determine the entry and exit levels of the strategy and condition the
frequency of the trades. The total time of the strategy is the sum of the expected
time it takes for the spread to go from the entry level until the exit level and the
time to go from the exit level back to the entry level, i.e. Ttotal = Tenter +Texit.
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The trading frequency is therefore 1
Ttotal

. We follow the same approach as

Bertram [18] and compute the optimal boundary levels as a function of the
first-passage time of the spread. The first-passage time of xt is defined as the
first time that the logarithm of the spread process xt reaches an upper boundary
b1 or a lower boundary b2:

T[b1,b2](x0) = inf
t0≤t
{t|b2 < xt < b1;x0 = x(0)}

Assuming that the probability densities of finding a log-spread x at a future time
t, denoted as p(x, t|x0, t0), satisfy the absorbing initial conditions p(xL, t) = 0
and p(xU , t) = 0, xL < xU , the probability that the process x reaches the
boundaries is:

G(t;xU , xL) = 1−
∫ xU

xL

p(x, t|x0, t0)dx

The corresponding density function solves:

g(t|x0, t0) =
∂

∂t
G(t|x0, t0) =

∫ xL

xU

∂

∂t
p(x, t|x0, t0)dx

Given two barrier levels b1 and b2, b1 < b2, the probability density function
of the first-passage time f(t; b1, b2) is the convolution of the density function g
from the lower limit until the upper limit with the density function g from the
lower boundary until the upper limit, i.e.

f(t; b1, b2) = g[−∞,b2](t; b1, t0)⊗ g[b1,∞](t; b2, t0) (9)

The expected trading length solves E[Ttotal] =
∫∞
0
tf(t; b1, b2)dt and the ex-

pected trade frequency and variance:

E[
1

Ttotal
] =

∫ ∞
0

1

t
f(t; b1, b2)dt

V ar[
1

Ttotal
] =

∫ ∞
0

1

t2
f(t; b1, b2)dt− E[

1

Ttotal
]2

A trading strategy is optimal if the boundaries b1 and b2 maximise an objective
function, which typically is the expected return of a portfolio µp or its Sharpe
ratio. With fixed barriers b1 and b2 the return per trade is deterministic b2−b1−c
where c is the transaction cost, but the time between trades is stochastic and
depends on the first-passage time of xt.
The expected profit and variance per trade frequency are:

µp = (b2 − b1 − c)E[
1

Ttotal
]

= (b2 − b1 − c)
∫ ∞
0

1

t
f(t; b1, b2)dt (10)

σp = (b2 − b1 − c)2V ar[
1

Ttotal
]

= (b2 − b1 − c)2
∫ ∞
0

1

t2
f(t; b1, b2)dt− µ2

p (11)
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Optimal barrier levels, defined as a function of the trading cost, is obtained by
maximising the expected return or Sharpe ratio of the strategy. The market
state beyond the barrier levels indicates market inefficiency. The profitability
of the statistical arbitrage strategy is illustrated in figure 8 as a function of the
transaction cost and barrier level.

4 Results and Discussion

4.1 Relation between waiting-time distribution and mar-
ket efficiency

This section tests whether the waiting-time distribution depends on the state
of the spread process. We expect a shorter time between transactions when the
spread reaches the tail of its historical distribution.
Figure 9 shows the waiting-time distribution of spread between RDS.A and
RDS.B. The left-side graph sketches the waiting-time distribution between 0
and 10 seconds. The first bar shows that more than half of the deals happens
within a second. Excluding the first bar, the waiting-time distribution is well fit-
ted with an exponential distribution. The right-side graph displays the long-life
waiting-time distribution, where the time exceeds 10 seconds. A similar pattern
is observed for the waiting-time distribution of ANZ spread in figure 10. Fig-
ures 11 and 12 present the waiting-time distribution within and outside barrier
levels for RDS- and ANZ-spreads, respectively. The barrier levels are first set
such that 90% of the observations lies within the boundaries. The blue bar re-
ports the estimation of the waiting-time distribution using all points surrounded
by the barriers. The red bar depicts the waiting-time distribution when only
transactions outside of the barriers are taken into account. We can see that
the market activity is higher, i.e. the time between truncation is shorter, when
arbitrage opportunities occur and thus when the spread process is outside of its
long-term mean.

Figure 11 shows that 52.6% of the RDS transactions are executed within
one second when the spread stays within its 90% quantile while 52.8% of the
transactions occur in less than one second when the spread is beyond its 10%
extreme values. The same pattern is observed for ANZ spread as illustrated in
figure 12. 34% of the ANZ transactions are executed within 5 seconds when
the spread is within the boundaries while more than 35% of the transactions
happens in the same time interval should the spread exceed its 10% extreme
values. In the second case, the barrier levels are defined such as 99% of the
spread prices stays within the boundaries. The green bar outlines the waiting-
time distribution when the spread is abnormally high or low. A significant
change in the waiting-time distribution is observed when the barrier levels are
placed wider to encompass 99% instead of 90% of spread prices.

Table 2 summarises the results and reports the probability that trades occur
within the next five seconds for the RDS spread and within 25 seconds for
the less liquid ANZ spread for each of the three cases. The more extreme the
spread prices, the shorter the time between transactions. This finding supports
the efficient market hypothesis. Arbitrageurs place orders as soon as the spread
abnormally diverges from its long-term equilibrium and, hence, shorten the time
between transactions.
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The waiting-time probability density function ψ(τ) is modelled as an exponential
distribution of parameter θ {

θe−θτ if τ ≥ 0
0 otherwise

Modelling ψ(τ) as an exponential distribution simplifies the discretisation of
the non-Markovian stochastic differential equation. Indeed, the Laplace trans-
form of the kernel φ(t) is constant

φ̃(t) =
tψ̃(t)

1− ψ̃(t)
=

t θ
t+θ

1− θ
t+θ

= θ (12)

and, therefore, φ(t) = θδ(t) where δ(t) is the Dirac function at t. The
discretisation of the non-Markovian master equation (7) shows that p(x, t+ 1),
the probability density function of finding a log-price x at a future time t+ 1, is
the sum of the survival probability up to time t times p(x, t) with the solution
of the Markovian stochastic density function (8):

p(x, t+ 1)︸ ︷︷ ︸
non−Markovian pdf

= (1− 1

θ
)︸ ︷︷ ︸

survival probability

p(x, t) +
1

θ
p(x, t+ 1)︸ ︷︷ ︸

Markovian pdf (8)

(13)

= Ψp(x, t) + (1−Ψ)p(x, t+ 1) (14)

where Ψ = 1 − 1/θ is the survival probability. Sudden and large bursts
in market liquidity, mainly driven by macroeconomic news announcements [?],
cause jumps in the survival probability. The effect of discontinuous survival
probability on the asset distribution p(x, t) is modelled in equation (13).
When modelled with an exponential distribution ψ(τ) = θe−θτ the optimal
parameter θ for the waiting-time distribution of RDS is 0.482, 0.523 and 0.550
for the 90% inside, 10% outside and 1% outside distribution, respectively. The
corresponding fitted value θ for ANZ spread is 0.0445, 0.0474 and 0.0555. The
higher the parameter θ, the shorter the time between transactions. It defines
whether the market is in an active or inactive phase and can be used as an
indicator of market efficiency.

4.2 Non-Markovian trading strategy with detrended spread

The trading strategy optimises the barrier levels b1 and b2 to maximise the
expected return µp. The probability density function λ(ξ) of the detrended
spread distribution of RDS is not normal as depicted in figure 3. The distribu-
tion exhibits fat tails in the region of ±(0.4− 0.7%). As such, the asset return
distribution λ(ξ) and waiting-time distribution ψ(τ) are inferred from histori-
cal spread prices x̃t. The non-Markovian trading strategy (7) yields a profit of
26.0% p.a. with a trading cost of 0.05% for optimal barrier levels of ±0.11%.
Table 1 contains the results of the strategy for various barrier levels with a fixed
cost of 0.05% per deal. Surprisingly, the optimal barrier levels remain the same
whether the strategy is applied to the original spread xt or the detrended process
x̃t. The algorithm is profitable for a range of barrier levels up to ±0.4%. We
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would expect barrier levels to be wider for highly non-stationary processes than
for detrended spreads. With the assumption of short non-stationary periods in
the overall stationary spread process, we believe that the non-Markovian trading
strategy (10-7) can equally be optimised with a detrended spread process.

5 Conclusion

In this article we analyse the relationship between the waiting-time distribution
function of the traded spread and market efficiency. We show that inefficient
price states outside of optimal barrier levels rapidly converge back to efficient
price states within optimal boundaries. The farther the spread price diverges
from its mean, the quicker is the mean-reversion. The barrier levels are obtained
from a non-Markovian trading strategy using both a detrended spread between
the two classes of ordinary shares of Royal Dutch Shell Plc and the two listings
of Australia and New Zealand Banking Group Limited. We show that the
parameter of the waiting-time exponential distribution is a good indicator of
market efficiency. In addition, we analyse the optimal trading strategy for non-
stationary process. Our results prompt further theoretical and empirical studies
on the duration of inefficient price states.
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[13] R.N. Mantegna, H. E. Stanley, Scaling behaviour in the dynamics of an
economic index, Nature, 376.6535 (1995): 46-49.

[14] D.A. Hsieh, Chaos and nonlinear dynamics: application to financial mar-
kets, Journal of Finance, 46.5 (1991): 1839-1877.

[15] M. Chng, Measuring the Summary Informativeness of Orders and Trades,
Review of Futures Markets, (2004): 245-281.

[16] Tick-by-tick quote data is provided by tickmarketdata.com

[17] E. Scalas, R. Gorenflo and F. Mainardi, Fractional calculus and continuous-
time finance, Physica A, 284 (2000) 376-384.

[18] William K. Bertram, Optimal Trading strategies for Itô diffusion processes
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Figure 1: Log-price difference between RDS.A and RDS.B.

Figure 2: Detrended log-price difference between RDS.A and RDS.B.

Barrier Profitability Deals
(with cost of 0.05% per deal)

0.05% 63.2% (14.1%) 982
0.08% 53.3% (24.6%) 574
0.11% 45.3% (26.0%) 386
0.15% 39.4% (25.8%) 272
0.20% 34.2% (25.0%) 184
0.30% 27.8% (22.2%) 112
0.40% 26.2% (22.3%) 78
0.50% 14.9% (12.9%) 40

Table 1: Using MA price with a 50000 averaging number gives 45.3% (26.0%
with costs) profit (386 deals)
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Figure 3: Empirical distribution of RDS-spread.

Figure 4: Log-price difference between ANZ.NZ and ANZ.AX.
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Figure 5: Empirical distribution of ANZ-spread.

Figure 6: Modelled probability density function of finding a log-price x at time
t, p(x, t) for the Markovian master equation (8).
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Figure 7: On top: The graph on the left illustrates the Markovian PDE, the
central figure depicts the non-Markovian PDE. The cross-sectional difference
between the non-Markovian and the Markovian PDEs at is displayed on the
right. At the bottom: 3D plot displays the differences between the two PDEs
over time.
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Figure 8: Profitability of the pair-trading ANZ-spread strategy. Profitability
depends on transaction cost and barrier level.

Figure 9: Waiting time distribution for RDS-spread.
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Figure 10: Waiting time distribution for ANZ-spread.

90% inside 10% outside 1% outside

RDS

1 sec 52.6% 58.2% 58.0%
2 sec 67.1% 72.1% 73.3%
3 sec 75.0% 79.2% 81.1%
4 sec 80.2% 83.9% 86.0%
5 sec 83.8% 86.9% 89.1%

ANZ

5 sec 34.0% 35.8% 34.4%
10 sec 53.0% 55.4% 56.2%
15 sec 65.2% 67.7% 68.8%
20 sec 73.6% 75.9% 76.5%
25 sec 79.7% 81.7% 82.1%

Table 2: Probability of trade occurrence over time for the three cases: 90%
time inside the barriers, 10% time outside the barriers, and 1% time outside the
barriers.
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Figure 11: Waiting-time distribution as a function of the barrier levels for RDS-
spread. Blue bars correspond to the barrier levels when the spread is 90% time
inside the barriers. Red is for 10% time outside the barriers and green is 1%
outside.
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Figure 12: Waiting-time distribution as a function of the barrier levels for ANZ-
spread. Blue bars correspond to the barrier levels when the spread is 90% time
inside the barriers. Red is for 10% time outside the barriers and green is 1%
outside.
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